Manually operatable on-chip bistable pneumatic microstructures for microfluidic manipulations.

نویسندگان

  • Arnold Chen
  • Tingrui Pan
چکیده

Bistable microvalves are of particular interest because of their distinct nature of requiring energy consumption only during the transition between the open and closed states. This characteristic can be highly advantageous in reducing the number of external inputs and the complexity of control circuitries since microfluidic devices as contemporary lab-on-a-chip platforms are transferring from research settings to low-resource environments with high integrability and a small form factor. In this paper, we first present manually operatable, on-chip bistable pneumatic microstructures (BPMs) for microfluidic manipulation. The structural design and operation of the BPM devices can be readily integrated into any pneumatically powered microfluidic network consisting of pneumatic and fluidic channels. It is mainly composed of a vacuum activation chamber (VAC) and a pressure release chamber (PRC), of which users have direct control through finger pressing to switch either to the bistable vacuum state (VS) or the atmospheric state (AS). We have integrated multiple BPM devices into a 4-to-1 microfluidic multiplexor to demonstrate on-chip digital flow switching from different sources. Furthermore, we have shown its clinical relevance in a point-of-care diagnostic chip that processes blood samples to identify the distinct blood types (A/B/O) on-chip.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics.

Three-dimensional tumor culture methods offer a high degree of biological and clinical relevance to in vitro models as well as cancer therapy. However, a straightforward, dynamic, and high-throughput method for micro-manipulation of 3D tumors is not yet well established. In this study, we present a novel and simple strategy for producing biomimetic 3D tumors in a controllable, high throughput m...

متن کامل

Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems.

We have developed pneumatic logic circuits and microprocessors built with microfluidic channels and valves in polydimethylsiloxane (PDMS). The pneumatic logic circuits perform various combinational and sequential logic calculations with binary pneumatic signals (atmosphere and vacuum), producing cascadable outputs based on Boolean operations. A complex microprocessor is constructed from combina...

متن کامل

Dynamic formation of a microchannel array enabling kinesin-driven microtubule transport between separate compartments on a chip.

Microtubules driven by kinesin motors have been utilised as "molecular shuttles" in microfluidic environments with potential applications in autonomous nanoscale manipulations such as capturing, separating, and/or concentrating biomolecules. However, the conventional flow cell-based assay has difficulty in separating bound target molecules from free ones even with buffer flushing because molecu...

متن کامل

Development and multiplexed control of latching pneumatic valves using microfluidic logical structures.

Novel latching microfluidic valve structures are developed, characterized, and controlled independently using an on-chip pneumatic demultiplexer. These structures are based on pneumatic monolithic membrane valves and depend upon their normally-closed nature. Latching valves consisting of both three- and four-valve circuits are demonstrated. Vacuum or pressure pulses as short as 120 ms are adequ...

متن کامل

Fabrication of Microstructures Embedding Controllable Particles Inside Dielectrophoretic Microfluidic Devices

This paper presents a method of particle manipulation by dielectrophoresis (DEP) and immobilization using photo‐crosslinkable resin inside microfluidic devices. High speed particle manipulation, including patterning and concentration control by DEP was demonstrated. Immovable and movable microstructures embedding particles were fabricated on‐ chip. Several microelec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Lab on a chip

دوره 14 17  شماره 

صفحات  -

تاریخ انتشار 2014